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Global persistence exponent in critical dynamics: Finite-size-induced crossover
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We extend the definition of a global order parameter to the case of a critical system confined between two
infinite parallel plates separated by a distance L. For a quench to the critical point we study the persistence
property of the global order parameter and show that there is a crossover behavior characterized by a nonuni-
versal exponent which depends on the ratio of the system size to a dynamic length scale.

DOI: 10.1103/PhysRevE.76.031117

Global persistence exponent for nonequilibrium critical
dynamics was introduced a decade ago [1], following the
emergence of similar exponents in the evolution of Ising
spins [2-4] in one and higher dimensions and the evolution
of a diffusing field [5] from random initial conditions in dif-
ferent dimensions. The simplest system exhibiting persis-
tence is the random walk in one dimension [6]. Since Brown-
ian motion under restrictive geometry has been of
experimental interest lately [7], the persistence problem was
addressed under those situations [8]. It was seen that the
power-law decay for the infinite system acquired an expo-
nential correction for the confined system (confinement by
walls or harmonic forces). This was in contrast to the finite
persistence probability observed by Manoj and Ray for
finite-size systems exhibiting critical dynamics. The quench
carried out by Manoj and Ray [9] was, however, deep into
the ordered region. For a D-dimensional Ising model, start-
ing from a random initial condition, they quenched the sys-
tem to 7=0 and allowed the spins to evolve according to
Glauber dynamics. Domains began forming and when it hap-
pened that the domain size became larger than the system
size, then the persistence probability attained a finite value.
The global persistence exponent of Majumdar er al. [1] was
defined differently. It referred to the quench from a high
temperature to T=T,, the critical point of the system, and
considered the global order parameter. The individual spins
flip rapidly and the probability of not flipping in an interval
has an exponential tail. It is only when the global order pa-
rameter is considered that one finds the power-law tail. In
this situation if we consider a finite-size system [10-12],
then for a sufficiently small system size (smaller than the
appropriate “dynamical” length scale), the global order pa-
rameter will no longer be so difficult to “overturn” and an
exponential tail could be expected just as it happened with
the Brownian motion in restrictive geometry. In this paper
we use the spherical limit to establish our result. Very re-
cently Gambassi ef al. have addressed a crossover in global
persistence probability with initial finite magnetization [13].

We consider the usual Landau Ginzburg free energy F for
the N-component order parameter ¢; {i=1,2,....N}, in a
three-dimensional (3D) space, that is,

*tpdc2 @mahendra.iacs.res.in
Ttpjkb@mahendra.iacs.res.in

1539-3755/2007/76(3)/031117(4)

031117-1

PACS number(s): 05.70.Jk, 02.50.Ey, 05.90.+m

) 1
F= f d3x(§¢i¢i+ S(V,0)(V,p) + fv(¢i¢i)(¢,-¢j>),

(1)
where the summation convention is implied.
The corresponding Langevin equation is given by
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where ¢ is a Gaussian white noise having correlation

(EFDEF 1) =20 8(F =) 8t —1"). (3)

Since we will be using spherical limit, it makes sense to
work in D=3 directly. The range of validity of the spherical
approximation is for 2<<D <4 and hence D=3 is the natural
choice.

The confinement is taken to be in the z direction and the
orthogonal space has two dimensions. The confining is in the
form of two “parallel plates” at z=0 and at z=L, where Di-
richlet boundary conditions hold. The other two dimensions
are infinitely extended. The decomposition of ¢;(7,f) is now
in terms of Fourier transform in two dimensions and a Fou-
rier series in the z direction, so that
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and the linearized Langevin equation becomes
s
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('ﬁi,n(lg’ t) == F(kz + )d’i,n(lg) - Fr¢i,n(E) + g[(lg)7 (5)
in the noninteracting limit, u=0. The subscripts (i,n) are,
respectively, component and mode indices. For the choice of

k=0 gives us

q.si,l(o’t) = g (6)

At the critical point for the confined system (r=—2/L? rep-
resents the mean field expression of the critical point), the
lowest mode (k=0, n=1) undergoes a Brownian motion, cor-
responding to a persistence exponent #=0.5. For the finite-
size system, we identify ¢;,(0) as the global order param-
eter.

To work in the spherical limit we write Eq. (2), which is
the original equation without the confining geometry, as

n=1, r=—1,
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Since (N(¢2)—2j¢]2») is of O(1) we find in the limit N —
(spherical limit), for any i, (in momentum space)
2
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where a(t)==T'(r+u{¢%). The solution for ¢,(k,7) can now
be written as

t
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where b(1)=[{dt'a(t'). The long time dynamics is dominated
by the noise containing term and (¢?) in that limit is given
by
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where
g(1) =200, (11)

The dynamics of g(¢) is given by

g= 2ng+4uFJ dtg(t)zf

2F(k2+n2772/L2)(t—t') )

(2m°
(12)

The critical point is now defined by the zero of the coeffi-
cient of the k=0, n=1 component of ¢,(k) in Eq. (8) and
thus

77,2
rc+u<¢2>=—;. (13)

We should point out here that we are not going to look at
the dimensional crossover. If L becomes smaller than all
other length scales in the problem, that is, L<<¢ (the corre-
lation length at the three-dimensional transition temperature),
the system would behave as a two-dimensional system which
has no transition. r, for such a system would tend to negative
infinity as it indeed does if we let L—0 in Eq. (13).
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We will, as we go along, define a dynamic length scale 7

(or I, in a different notation) and small L would mean L<I.
If we consider Eq. (12) at the critical point, then in the
terms of the Laplace transform we arrive at

g(s)=l/<s+

where AJ=J(0,L)-J(s,L) with

-
J(s,L) =2 f(dk ! . (15)

f2 - 4r2u(Ai)) : (14)

2m)% s+ 2T (K + n*>72/IL?)
We note that s allows us to introduce a length scale T

=(I'/s)"2. Since the long time behavior is of interest, our

focus will be on small values of s, which will make / a large
length scale. The system size L will have to be compared to

the length scale 1. As explained in Appendix A, the small s
form of g(s) at finite values of L can be well approximated

by
r r 2
3ls) = F[(lzﬂ ) +2<z2 >ln<§r)} (16)

The real time behavior is obtained by inverting the Laplace
transform of g(s) and we have
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At this order the expressions for a(z) and b(r) become
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We note that for L large enough so that > 1, a(r)= 4;3 with

the first correction given by

— 2
i Vo |21t ( L )
a(t)_4t{l_ > N2 M2 | (19)

For F—§ <1, we can write a(z) as %), where €(7) is the quantity
in brackets in Eq. (19) and is a slowly varying function in the
range considered.

The global mode ¢,(0) now satisfies the equation of mo-
tion [see Eq. (8)]

7
(jt )¢1(0)—Q¢,(0t>+§<t) (20)

Under the transformation ¢,(0,7)=e ™€y ) and
making the slowly time varying approximation whereby
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(€é/€)tInt is considered significantly smaller than unity (that
is I't/L? reasonably smaller than unity), we arrive at

w( t) — el"ml/Lz r e(t)/4 ‘,;_—( t) )

With the transformation of variable 7=t¢*, where x is a very
slowly varying function of time in the range concerned and
hence can be considered practically constant, we have

Wﬂgééﬁ%%ﬂmaa=ﬂﬂ. 1)

The correlation function (f(7)f(7')) will be & correlated in 7
space provided
e 27Tt 1
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and Eq. (21) becomes

(1) = (7). (23)

Since the size-dependent correction in € is O(L™'), we can
drop the last term to the leading order and write as the first
effect of the finite size the relation

1 .\ N | ( 12 ) 24)
=—+—1\/—In| 5—|.
ot Nz ™M ey

The persistence probability for the process of Eq. (23) goes

as 72, and hence in the actual time variable ¢,

pe) ~ ——— . (25)

t1/4+v‘wrt/32L2 In(L2/e*T 1)+ -

The decay is clearly hastened at a finite value of L. We
would like to emphasize that the logarithmic corrections
above is a special feature of D=3. Further, the 4]_1 in Eq. (25)
is the spherical limit persistence exponent in D=3.

What happens is L?/T't becomes smaller than unity. Re-
turning to Eq. (14) and Eq. (A3) (see Appendix A), it is now
clear that the leading behavior of g(r) is e T leading to

b(t)= t and a(r)==75. This implies a dynamics

d '+
E@(O,t) =-— 7(;51(0,;) +&(1). (26)

The associated p(z) is known from Ref. [8] to be
1—~ ﬂ,z o TmiL?
p) ~
V)

A combination of the forms of Eq. (25) and Eq. (27) can be
achieved by

(27)

2
e—FﬂTzl‘/2L
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PHYSICAL REVIEW E 76, 031117 (2007)

where

/3202 1
a= W_I%:IW (29)
1

ol =—
Tt

For L>>T't, we have the result of Majumdar et al. [1], that
is, p(t) ~ "4, while for L><Tt, we regain Eq. (27).
Finally, we need to address what would happen if the
spherical constraint is relaxed. We consider the equation of
motion for (d)lz) with i=1 (say). In the spherical limit,

1d
53;¢b=rva¢b—r0+m¢%x¢b+@¢o.(a»

If we consider the first correction to the spherical limit
through the term 5\‘,'([2 d) N<¢2)]¢1) then it is clear that

the first nonvanishing term is NEj(cﬁjd)l}(d)JqB])— <¢%)2
Thus the role of the term is to change u in Eq. (30) to ull
+;T,) (note that (¢?)=(?)). This implies a change of O(1/N)
in the persistence exponent 6 and this will affect Eq. (29) to
the extent that the i in the exponent of the denominator of
the right-hand side will acquire a O(1/N) correction. This is
a result that is independent of the spherical limit. If we imag-
ine a perturbative calculation of (¢?) starting from Eq. (2) as
would be done in an € expansion, or in evaluating the next to
leading term in N~!' expansion, the sL?/2I' <1 limit always
yields a small correction to the s obtained from time deriva-
tive. In this limit the growth rate is dominated by the small
extension in the z direction and the collective effect of the
low modes is small in comparison.

We note that the critical relaxation rate for a system gov-
erned by Eq. (2) goes as ['k?, where k is the wave number of
fluctuations. For finite size system the minimum value is of
O(L™") and the lowest frequency is given by 'L~2. For any
arbitrary time scale 7, the relaxation rate allows us to define a
dynamic length scale /;= \T't. The ratio L2/T't which has fea-
tured so prominently in our discussion is thus the ratio L2/ .
The results of Majumdar et al. [1] are for the limit L>1,.
Our Eq. (28) is an attempt to capture the entire range from
L>[,t0 L<,.
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APPENDIX A

In this appendix we focus on the evolution of AJ and
hence g(s) for small values of s. This is predicated by our
necessity of evaluating g(7) at long times. The small values

of s allows us to define a length scale 1=(T'/5)"2, which is

big, and it is the competition between the system size L and
[, which is of interest. We write
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AJ=J(0,L) - J(s,L)
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> | @y = =

w=1 S 2m) 2r<k2+—” . )2F<k2+—” . )
L L

Ef &’k 1
4F2 (277')2 I’l2772 . >
e TR
k2+’12712 i
7 1 21 L?
= - 5 n
2l 4= , n'm s
+— + =

. I
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with x=sL?/2T.

We now need to explore the other limit 1> L as well as the
limit /<L. The first limit corresponds to Vx<1 while the
second limit corresponds to Vx> 1. In the first case we arrive
at

L%s
9672

AT = for sL?/2T < 1. (A2)

Since the denominator of Eq. (14) already contains a term

linear in s, this limit of AJ will not reveal any additional
feature. _
The second limit (Vx> 1) gives us the first correction to

AJ and we have
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Finally, since we are interested only in small values of s,
term of O(s) will be dropped in g(s) of Eq. (14) hence with
the help of Eq. (A3), we arrive at

2(s) 21T |
= +
&= rL(si20)”

In(L?s/2T)
2L(s/21)2 |

APPENDIX B

In this appendix we give the explicit calculations for g(z),
b(t), and a(z). Inverting Eq. (17) we have

o= (2I‘>1/2 1+£T<£)1/21 <L2>
L? 2 \ L% 2t

Using Eq. (12) we have

2b(r)=-1ng(r),

and therefore we have
2b(1) = 1 ‘ 1[1 W(m)ml (E”
=—Int-In|1+—|— nl —1/].
2\ ? 2Tt

This gives us for Cl(t),
(2€ I l)
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